On Exceptional Sets of Asymptotic Relations for General Orthogonal Polynomials

Amiran Ambroladze
Department of Mathematics, Thilisi State University, Republic of Georgia, and Laboratory of Complex Analysis and Dynamical Systems, Foundation "Matematika," Moscow, Russia
Communicated by Vilmos Totik

Received August 2, 1993; accepted in revised form September 7. 1994

The n-th root asymptotic behavior of orthonormal polynomials $q_{n}(z)$ corresponding to an arbitrary measure in the complex plane is studied. In particular, the following theorems are established (here Ω denotes the outer domain of the support of the measure, and $g_{\Omega}(z)$ is the Green function of Ω):

Theorem 1. $\overline{\lim }_{n \rightarrow x}\left|q_{n}(z)\right|^{1 / n} \geqslant e^{x_{a^{(z)}}}$ everywhere in Ω.
THEOREM 2. $\overline{\lim }_{n \rightarrow \infty}\left|q_{n}(z)\right|^{1 / n} \geqslant 1$ everywhere on $a \Omega$ outside the discrete spectrum of the measure.

Theorem 3. For arbitrary countable set of points $\left\{a_{k}\right\}_{k=1}^{r} \subset \mathrm{C}$ there is a measure for which

$$
\lim _{n \rightarrow x}\left|q_{n}(z)\right|^{1 / n}=0, \quad \text { if } \quad=\in\left\{a_{k}\right\}_{1}^{x},
$$

and

$$
\overline{\lim }_{n \rightarrow \infty}\left|q_{n}(z)\right|^{1 / n}=\infty, \quad \text { if } \quad z \notin\left\{a_{k}\right\}_{1}^{x}
$$

1. 1995 Academic Press. Inc

1. Introduction

1. Definitions and Objectives

The present work is concerned with problems of asymptotic behavior of general orthogonal polynomials and their application to rational approximations.

Let μ be a finite Borel measure on C with compact support $S(\mu)$, and let $\operatorname{Co}(S(\mu))$ be the convex hull of $S(\mu), \Omega=\Omega(\mu)$ denotes the outer domain of $S(\mu)$, i.e., the unbounded component of $\overline{\mathrm{C}} \backslash S(\mu), \partial \Omega$ is its boundary. By
$g_{\Omega}(=)$ we denote the Green function of the domain Ω. Let $\left\{q_{n}(z)\right\}_{n=0}^{x}$ be the orthonormal polynomials associated with μ :

$$
\int q_{m}(z) \overline{q_{n}(z)} d \mu(z)=\delta_{m, \mu}
$$

In case of general measures it is natural to investigate so-called nth root asymptotic befavior of the orthonormal polynomials, i.e., asymptotic befavior of the sequence $\left\{\left|q_{n}(z)\right|^{1 / n}\right\}_{1}^{x}$.

The most general results in this direction are obtaind in the monograph [StTo] of H. Stahl and V. Totik. In particular, the following theorems, which describe asymptotic behavior of the orthonormal polynomials on and outside the support of the measure, are established (see [StTo], p. 4):

Theorem StTo-1. For every infinite subsequence of natural numbers $A \in \mathrm{~N}$ we have

$$
\overline{\lim }_{n \rightarrow n \in A}\left|q_{n}(z)\right|^{1 / n} \geqslant e^{x_{\Omega}(=)}
$$

for z quasi everywhere (with the exception of a subset of capacity zero) in Ω.
Besides that, if $z \in \mathrm{C} \backslash \mathrm{Co}(S(\mu))$, the following more precise estimation takes place:

$$
\underline{\lim }_{n \rightarrow \infty}\left|q_{n}(z)\right|^{1 / n} \geqslant e^{\left.g_{g^{2}} z\right)}
$$

uniformly on compact subsets of $C \backslash C o(S(\mu))$.
We note here that if in the last relation we have

$$
\lim _{n \rightarrow \infty}\left|q_{n}(z)\right|^{1 / n}=e^{s_{n 2}(z)}
$$

uniformly on compact subsets of $\mathrm{C} \backslash \mathrm{Co}(S(\mu))$, then the measure μ is said to be regular (see [StTo], p. 61).

Theorem StTo-2. For any infinite subsequence $A \in \mathrm{~N}$

$$
\overline{\lim }_{n \rightarrow \infty, n \in A}\left|q_{n}(z)\right|^{1 / n} \geqslant 1
$$

for z quasi everywhere on $\partial \Omega$.
There is a broad bibliography concerning these questions in [StTo]. We only mention one of the earliest works in this direction [Ko], where, in particular, existence of a continuous singular function $\phi_{1}(x)$ and a jump
function $\phi_{2}(x)$ was established, for which the corresponding measures $\phi_{1}(x) d x$ and $\phi_{2}(x) d x$ are regular.

The main question we are investigating in this paper is whether it is possible to omit the condition "quasi everywhere" in Theorems StTo-1 and StTo-2 in case of the complete sequence.

2. Statement of Main Results

For the case when $z \in \Omega$ we establish

Theorem 1. We have

$$
\begin{equation*}
\varlimsup_{n \rightarrow x}\left|q_{n}(z)\right|^{1 / n} \geqslant e^{g_{\Omega^{\prime}}=1} \quad \text { everywhere in } \Omega . \tag{1}
\end{equation*}
$$

This theorem has the following stronger version:
Theorem 1'. For arbitrary point $z_{0} \in \Omega$ there exist a neighbourhood $u\left(z_{0}\right)$ of this point and an infinite subsequence $A\left(z_{0}\right)$ of natural numbers such that

$$
\begin{equation*}
\lim _{n \rightarrow x \cdot n \in A\left(z_{0}\right)}\left|q_{n}(z)\right|^{1 ; n} \geqslant e^{\left.g_{n} t=\right)} \quad \text { uniformly in } u\left(z_{0}\right) . \tag{1'}
\end{equation*}
$$

In connection whith Theorem 1 we mention the following result:

Theorem (see e.g. [NiSo], p. 97). If μ is supported on the real line, then everywhere in Ω

$$
\varlimsup_{n \rightarrow \infty}\left|q_{n}(x)\right|^{1 / n}>1
$$

This theorem asserts the fulfilment of the limit relation everywhere in Ω, but in a weaker form $\left(1<e^{\psi_{S}(\cdot x)}\right)$.

In the case when $z \in \partial \Omega$ the following theorem takes place
Theorem 2. We have

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|q_{n}(z)\right|^{1 / n} \geqslant 1 \tag{2}
\end{equation*}
$$

evertwhere on $\partial \Omega$ outside the discrete spectrum of the measure μ.
(z is called to be in the discrete spectrum of μ if $\mu(\{z\})>0)$.
Remark. It is natural to ask by analogy with Theorem 1 whether in the right hand side of (2) we may replace 1 by $e^{g_{\Omega}(z)}$. ($e^{g_{\Omega}(z)}>1$ for the irregular points $z \in \partial \Omega$.) The answer is negative: it is possible to show that $q_{n}(z)$ may grow slower then any power function $n^{1 / 2+\varepsilon}, \varepsilon>0$, if z is a non-isolated point of $\partial \Omega$.

Theorem 2 may be strengthened in the following way:

Theorem 2'. We have

$$
\left[\sum_{n=0}^{\infty}\left|q_{n}^{2}(z)\right|\right]^{-1}=\mu(\{z\})
$$

everywhere on $\partial \Omega$.
Relation (2') was well-known for the case when $S(\mu) \subset \mathrm{R}$ (in this case $S(\mu)=\partial \Omega)$.

Theorem 2^{\prime} yields the following
Corollary 1. For every $\varepsilon>0$

$$
\varlimsup_{n \rightarrow \infty}\left|q_{n}(z)\right| \cdot n^{1 / 2+\varepsilon}=\infty
$$

everywhere on $\partial \Omega$ outside the discrete spectrum.
This corollary means that the sequence $q_{n}(z)$ cannot tend to zero faster than some power function.

The following theorem shows that in general the exceptional set in Theorem 2 cannot be reduced:

Theorem 3. For arbitrary countable set of points $\left\{a_{k}\right\}_{k=1}^{\infty} \subset C$ a discrete measure may be constructed, concentrated at these points, such that for the corresponding orthonormal polynomials we have

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty}\left|q_{n}(z)\right|^{1 / n}=0, & \text { if } z \in\left\{a_{k}\right\}_{1}^{\infty}, \\
\overline{\lim }_{n \rightarrow \infty}\left|q_{n}(z)\right|^{1 / n}=\infty, & \text { if } z \notin\left\{a_{k}\right\}_{1}^{\infty}
\end{array}
$$

Remark. In the both relations of Theorem 3 the convergence may be realized with arbitrary high rate (see for the exact formulation below). Moreover, the superior limit in the second relation may be replaced by ordinary one for quasi every $z \in C$, i.e., we can write

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|q_{n}(z)\right|^{1 / n}=\infty \tag{3}
\end{equation*}
$$

everywhere in C with the exception of a subset E of capacity zero. (We will show below that even Hausdorf logarithmic measure of E may be equel to zero).

In spite of the fact that the exceptional set E is sufficiently small it would be disirable to guarantee fulfilment of condition (3) for some set given beforehand. In this connection the following theorem is of interest:

Theorem 4. For arbitrary disjoint countable sets $\left\{a_{k}\right\}_{1}^{x} \subset \mathbf{C},\left\{b_{k}\right\}_{1}^{x} \subset \mathbf{C}$, and for arbitrary sequence of positive numbers $\alpha_{n} \rightarrow 0($ as $n \rightarrow \infty)$, a discrete measure, concentrated at the points $\left\{a_{k}\right\}$, can be constructed, so that for the corresponding orthonormal polynomials we have

$$
\begin{array}{ll}
q_{n}\left(a_{k}\right) \leqslant \alpha_{n}, & \forall n \geqslant k, \\
q_{n}\left(b_{k}\right) \geqslant \frac{1}{\alpha_{n}}, & \forall n \geqslant k .
\end{array}
$$

We note here that the estimates (1), (1') and (2) are precise. This follows from the results of the monograph [StTo]. In particular, for regular measures we have precise equalities in relations (1) and (1^{\prime}) (see [StTo], p. 60). And besides that, if the domain Ω is regular (with respect to the Dirichlet problem) than we have a precise equality in relation (2) as well (see [StTo], p. 67).

3. Applications

The proof of theorem 1^{\prime} is based on a theorem from [StTo] (see below) and on the following lemma which is of independent interest:

Lemma 1. Let $\rho_{n}(z)$ denote the distance from a point $z \in \mathrm{C}$ to the zeros of the polynomial $q_{n}(z): \rho_{n}(z)=\operatorname{dist}\left(z,\left\{z \operatorname{eros}\right.\right.$ of $\left.\left.q_{n}(z)\right\}\right)$. Then

$$
\varlimsup_{n \rightarrow \infty} \rho_{n}(z)>0, \quad \forall z \in \Omega .
$$

This lemma, in particular, specifies the following classical theorem (see [Sz], Theorem 6.1.1.):

Let a measure μ have a compact support $S(\mu) \subset \mathbf{R}$ and let (α, β) be an open interval such that $\mu\{(\alpha, \beta)\}>0$. Then each polynomial $q_{n}(x)$ has at least one zero on (α, β) for sufficiently large indices n.

The assertion of this theorem means the following inclusion

$$
x \in S(\mu) \Rightarrow \rho_{n}(x) \rightarrow 0
$$

Taking into account Lemma 1 we obtain
Corollary 2. Let a measure μ have a compact support $S(\mu) \subset \mathbf{R}$. Then

$$
x \in S(\mu) \Leftrightarrow \rho_{n}(x) \rightarrow 0 .
$$

This corollary shows that when $S(\mu) \subset \mathbf{R}$ the support of the measure may be characterized in terms of $\rho_{n}(x)$.

Remark. The simple example of the linear Lebesque measure on the unit circle (when $q_{n}(z)=z^{n}$) shows that Corollary 2 is not true for the general case when $S(\mu) \subset C$. But it will be true if we demand in addition that $\bar{\Omega}=\overline{\mathrm{C}}(\bar{\Omega}$ is the closure of $\Omega)$. More generally, Corollary 2 is true in the class of the inner points of the set $\bar{\Omega}$. This assertion follows on the one hand from Lemma 1, and on the other hand from the reasoning analogous to the one in the proof of Theorem 1 from [SaTo].

Another field of application of the results is the theory of convergence of Padé approximants (in case when $S(\mu) \subset \mathbf{R}$).

Corollary 3. Let $\pi_{n}(z)$ denote the diagonal Padé approximants to a Markov function $\hat{\mu}(z)=\int(z-t)^{-1} d \mu(t)$, constructed at the point $z=\infty$ (see, e.g. [BaGr]). Then

$$
\varlimsup_{n \rightarrow \lim _{i}, n \in\{i=n)}\left|\hat{\mu}(z)-\pi_{n}(z)\right|^{1 / 2 n} \leqslant e^{-g_{g l}(=)}
$$

uniformly in $u\left(z_{0}\right)$, where $u\left(z_{0}\right)$ and $A\left(z_{0}\right)$ are defined as in Theorem 1^{\prime}.
For regular measures μ we have precise equality in the last relation. From Corollary 3 immediately follows

Corollary 4. Under the conditions of Corollary 3 we have

$$
\pi_{n}(z) \rightarrow \hat{\mu}(z) \quad \text { uniformly in } u\left(z_{0}\right), \quad z_{0} \notin S(\mu)
$$

as $n \rightarrow \infty, n \in \Lambda\left(z_{0}\right)$.
The last result is related with an open Padé problem concerning uniform convergence of subsequences of the Pade approximants on compact subsets of the domain of analyticity of the function (see [BaGr]). The pointwise convergence of the corresponding approximants is known (see [AKW]). Corollary 4 establishes locally uniform convergence of these approximants for the Markov type functions.

2. Proof of Theorem 1^{\prime}

The following theorem is known (see [StTo], p. 5):
Let D be a domain, $\bar{D} \subset \Omega$. Then

$$
\varliminf_{n \rightarrow x}\left|\frac{q_{n}(z)}{\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{m}\right)}\right|^{1 / n} \geqslant e^{g_{\Omega}(z)}
$$

uniformly on compact subsets of D, where $z_{1}, z_{2}, \ldots, z_{m}$ are the zeros of $q_{n}(z)$ in D. (The zeros and their quantity depend on n).

From this theorem and Lemma 1 (wich will be proved below) follows Theorem 1' if in the capacity of D we take some neighbourhood of the point z_{0}, whoose radius is less than $\overline{\lim } \rho_{n}\left(z_{0}\right)$.

Theorem 1' is proved.
Proof of Corollary 3. Corollary 3 follows from Theorem 1' if we take into account that (see, e.g. [StTo], p. 152)

$$
\hat{\mu}(z)-\pi_{n}(z)=\frac{1}{q_{n}^{2}(z)} \int \frac{q_{n}^{2}(x) d \mu(x)}{z-x}
$$

where $\int(z-x)^{-1} q_{n}^{2}(x) d \mu(x)$ is bounded on compact subsets of Ω.
Proof of Lemma 1. For a compact set, for example, for $S(\mu)$, the polynomial convex hull $\operatorname{Pc}(S(\mu))$ is defined as following: a point z belongs to $P c(S(\mu))$ if we have $|P(z)| \leqslant\|P\|_{\text {isup }, ~ s i(\mu)}$ for every polynomial P, where $\|P\|_{\text {sup. si }}$, denotes the suppremum-norm of P on $S(\mu)$.

It is known that $P c(S(\mu))=\bar{C} \backslash \Omega$ (see e.g. [StTo], p. 2). That means that for arbitrary point $z_{0} \in \Omega$ there exists a polynomial $P_{0}(z)$, such that

$$
\begin{equation*}
\left\|P_{0}(z)\right\|_{\text {sup. }} s_{(\mu)}=1, \quad P_{0}\left(z_{0}\right)>x>1 . \tag{4}
\end{equation*}
$$

The following extremal property of orthonormal polynomials is known (in general for arbitrary $z_{0} \in C$; see [Ak], p. 80):

$$
\begin{equation*}
\sup _{\operatorname{deg} T \leqslant n}\left(T\left(z_{0}\right) /\|T\|_{z_{1}, 2}\right)=\sqrt{S_{n}}, \tag{5}
\end{equation*}
$$

where $S_{n}=\sum_{k=0}^{n}\left|q_{k}\left(z_{0}\right)\right|^{2}$ and $\|T\|_{I^{2}(\mu)}=\left(\int|T(z)|^{2} d \mu(z)\right)^{1 / 2}$.
The polynomial

$$
\begin{equation*}
T_{n}(z)=\sum_{k=0}^{n} \beta_{k} q_{k}(z), \quad \text { where } \quad \beta_{k}=\overline{q_{k}\left(\tau_{0}\right)} / \sqrt{S_{n}} \tag{6}
\end{equation*}
$$

provides the suppremum in this problem.
Without loss of generality we may assume that $\mu(\mathrm{C})=1$. Then from (4) and (5) it follows that $S_{n_{1}}>x^{2}>1$, where $n_{0}=\operatorname{deg} P_{0}$.

Next we need
Assertion 1. There is a $\gamma>1$, such that

$$
\begin{equation*}
S_{n}>\gamma^{\prime \prime} \tag{7}
\end{equation*}
$$

for all sufficiently large n.

Proof. Consider the polynomials $P_{0}^{m}(z), m \in N$. From (4) and (5) we obtain

$$
S_{m_{3} m}>\alpha^{2 m}=\left(\alpha^{2 / n_{1}}\right)^{n_{0} m_{1}}
$$

This yields (7) for all indices n divisible by n_{0}, where $\gamma=x^{2 / n}>1$. Decreasing a little γ we obtain (7) for all sufficiently large n.

Assertion 2. For every $z_{0} \in \Omega$ there is a $c>0, c=c\left(z_{0}\right)$, such that the following inequality takes place for infinitely many indices $n \in N$:

$$
\begin{equation*}
a_{n}>c \cdot S_{n-1} \tag{8}
\end{equation*}
$$

where $a_{n}:=\left|q_{n}\left(z_{0}\right)\right|^{2} .\left(S_{n}=\sum_{0}^{n} a_{k}\right)$.
Proof. Assume on the contrary that for every $c>0$ there exists a number $N=N(c)$ such that

$$
\begin{equation*}
a_{n+1} \leqslant c \cdot S_{n}, \quad \forall n \geqslant N . \tag{9}
\end{equation*}
$$

In particular $a_{N+1} \leqslant c \cdot S_{N}$. Consequentely:

$$
\begin{equation*}
S_{N+1}=a_{N+1}+S_{N} \leqslant c S_{N}+S_{N}=(c+1) S_{N} \tag{10}
\end{equation*}
$$

From (9) and (10) it follows that

$$
\begin{equation*}
a_{N+2} \leqslant c S_{N+1} \leqslant c(c+1) S_{N} \tag{11}
\end{equation*}
$$

Then (10) and (11) yield

$$
S_{N+2}=a_{N+2}+S_{N+1} \leqslant c(c+1) S_{N}+(c+1) S_{N}=(c+1)^{2} S_{N}
$$

And so on, we obtain

$$
\begin{equation*}
S_{N+n} \leqslant(c+1)^{n} S_{N}, \quad \text { for all } \quad n \geqslant N \tag{12}
\end{equation*}
$$

If we take c such a small that $c+1<\gamma$, then (12) and (7) contradict one another for sufficiently large numbers n.

After these preliminaries we are in the position that we can prove Lemma 1. Suppose that Lemma 1 is not true, i.e. there is a $z_{0} \in \Omega$, $\rho_{n}\left(z_{0}\right) \rightarrow 0$. From (8) it follows that

$$
\begin{equation*}
a_{n}<S_{n}<\frac{c+1}{c} a_{n} . \tag{13}
\end{equation*}
$$

Let N_{0} denote the set of numbers n for which (8) and (13) are true. By assumption each polynomial $q_{n}(z)$ has at least one zero near to z_{0}. Denote this zero by $z_{n}, z_{n} \rightarrow z_{0}$.

Consider the polynomials

$$
\hat{q}_{n}^{\prime}(z)=q_{n}(z) \frac{z-z^{\prime}}{z-z_{n}},
$$

where z^{\prime} is a fixed point, $z^{\prime} \in \Omega, z^{\prime} \neq z_{0}$. We have:

$$
\left|\hat{q}_{n}\left(z_{0}\right) / q_{n}\left(z_{0}\right)\right| \rightarrow \infty, \quad n \rightarrow \infty .
$$

But the ratio $\left\|\hat{q}_{n}\right\|_{L^{2} \uparrow(\mu)} /\left\|\boldsymbol{q}_{n}\right\|_{L^{2}(\mu)}$ remains bounded as $n \rightarrow \infty$. We claim that we can assert the same about the polynomials (see (6)) $T_{n}(z)=$ $\sum_{k=0}^{n} \beta_{k} q_{k}(=)$ and $\hat{T}_{n}(=)=\sum_{k=0}^{n-1} \beta_{k} q_{k}(z)+\beta_{n} \hat{q}_{n}(=)$, as $n \rightarrow \infty, n \in N_{0}$.

In fact,

$$
\begin{aligned}
\left|\frac{\hat{T}_{n}\left(z_{0}\right)}{T_{n}\left(z_{0}\right)}\right| & =\frac{\left|\sum_{k=0}^{n-1} \beta_{k} q_{k}\left(z_{0}\right)+\beta_{n} \hat{q}_{n}\left(z_{0}\right)\right|}{\left|\sum_{k=0}^{n} \beta_{k} q_{k}\left(z_{0}\right)\right|} \\
& \geqslant \frac{\left|\beta_{n} \hat{q}_{n}\left(z_{0}\right)\right|-\left|\sum_{0}^{n-1} \beta_{k} q_{k}\left(z_{0}\right)\right|}{\left|\sum_{0}^{n} \beta_{k} q_{k}\left(z_{0}\right)\right|} \geqslant\left|\frac{\beta_{n} \hat{q}_{n}\left(z_{0}\right)}{\sum_{0}^{n} \beta_{k} q_{k}\left(z_{0}\right)}\right|-1 .
\end{aligned}
$$

But,

$$
\left|\frac{\beta_{n} \hat{q}_{n}\left(z_{0}\right)}{\sum_{0}^{n} \beta_{k} q_{k}\left(z_{0}\right)}\right|=\left|\frac{\hat{q}_{n}\left(z_{0}\right)}{q_{n}\left(z_{0}\right)}\right| \cdot\left|\frac{\beta_{n} q_{n}\left(z_{0}\right)}{\sum_{0}^{n} \beta_{k} q_{k}\left(z_{0}\right)}\right|,
$$

where $\left|\hat{q}_{n}\left(z_{0}\right) / q_{n}\left(z_{0}\right)\right| \rightarrow \infty$, as $n \rightarrow \infty$, and

$$
\left|\frac{\beta_{n} q_{n}\left(z_{0}\right)}{\sum_{0}^{\prime \prime} \beta_{k} q_{k}\left(z_{0}\right)}\right|=\frac{a_{n}}{S_{n}} \geqslant \frac{c}{c+1} .
$$

as $n \in N_{0}$ (see (13)). Hence, $\left|\hat{T}_{n}\left(z_{0}\right) / T_{n}\left(z_{0}\right)\right| \rightarrow \infty$, as $n \rightarrow \infty, n \in N_{0}$.
Furthermore, $\left\|\hat{T}_{n}(z)\right\|_{L^{2},(\mu)} /\left\|T_{n}(z)\right\|_{L^{2},(\mu)}=\left\|\hat{T}_{n}(z)\right\|_{L^{2}(\mu)} \leqslant\left\|\sum_{0}^{n-1} \beta_{k} q_{k}(z)\right\|_{L^{2}(, k)}$ $+\left\|\beta_{n} \hat{q}_{n}(z)\right\|_{L^{2}(\alpha)}=\left(\sum_{0}^{n-1}\left|\beta_{k}\right|^{2}\right)^{1 / 2}+\left\|\beta_{n} \hat{q}_{n}(z)\right\|_{L^{2}(\alpha)} \leqslant 1+\left\|\beta_{n} \hat{q}_{n}(z)\right\|_{L^{2}(\alpha)} \leqslant$ $1+\left\|\hat{q}_{n}(z)\right\|_{L^{2}(\mu)}=1+\left\|\hat{q}_{n}(z)\right\|_{L^{2}\left(\mu_{1}\right)} /\left\|\boldsymbol{q}_{n}(z)\right\|_{L^{2}(\mu)}$. But $\left\|\hat{q}_{n}(z)\right\|_{L^{2}(\mu)} /\left\|q_{n}(z)\right\|_{E^{2}\left(z_{n}\right)}$ is bounded as $n \rightarrow \infty$. Hence $\left\|\hat{T}_{n}(z)\right\|_{L^{2}(\mu)} /\left\|T_{n}(z)\right\|_{L^{2}(\alpha)}$ will also be bounded as $n \rightarrow \infty$.

From all these estimations we obtain:

$$
\frac{\left|\hat{T}_{n}\left(z_{0}\right)\right|}{\left|T_{n}\left(z_{0}\right)\right|} \cdot \frac{\left\|T_{n}\right\|_{I^{2}(\mu)}}{\left\|\hat{T}_{n}\right\|_{L^{2}(\mu)}} \rightarrow \infty
$$

as $n \rightarrow \infty, n \in N_{0}$, and, in particular,

$$
\frac{\left|\hat{T}_{n}\left(z_{0}\right)\right|}{\left\|\hat{T}_{n}(z)\right\|_{L^{2}(t, e)}}>\frac{\left|T_{n}\left(z_{0}\right)\right|}{\left\|T_{n}\right\|_{L_{1}^{2},(,)}},
$$

for all sufficiently large n. But this relation contradicts the extremality of polynomials $T_{n}(z)$ (see (6)).

Lemma 1 is proved.

3. Proof of Theorem 2 '.

Fix a point $z_{0} \in \partial \Omega$. We rewrite (5) in the following form:

$$
\inf _{\operatorname{deg} P \leqslant n} \frac{\|P\|_{L^{2}(\mu)}}{\left|P\left(z_{0}\right)\right|}=\left[\sum_{k=0}^{n}\left|q_{k}\left(z_{0}\right)\right|^{2}\right]^{1-1 / 2} .
$$

We shall construct a class of polynomials $P_{\varepsilon}(z)$ with $\left|P_{\varepsilon}\left(z_{0}\right)\right|=1$ (or, more exactly, $\left|\left|P_{i}\left(z_{0}\right)\right|-1\right|<\varepsilon$, but that does not matter), uniformly bounded on $S(\mu)$ and such that

$$
\lim _{z \rightarrow 0} P_{t}(z)= \begin{cases}1, & z=z_{0} \\ 0, & z \neq z_{0}, z \in S(\mu) .\end{cases}
$$

Then from Lebesgue theorem we shall have that

$$
\left\|P_{s}(z)\right\|_{L_{1}^{2}(\mu)}^{2} \rightarrow \mu\left(\left\{z_{0}\right\}\right), \quad \text { as } \quad \varepsilon \rightarrow 0,
$$

and evidently

$$
\left[\left.\sum_{k=0}^{\infty}\left|q_{k}\left(z_{0}\right)\right|^{2}\right|^{1} \leqslant \mu\left(\left\{z_{0}\right\}\right)\right.
$$

The inverse inequality is trivial.
For any $\varepsilon>0$ we define a non-negative continuous function $f_{6}\left(\left|z-z_{0}\right|\right)$, where the function $f_{\varepsilon}(r)(r \geqslant 0)$ is defined in the following way: $f_{\varepsilon}(0)=1$, $f_{\varepsilon}(r)=0$, when $r \geqslant \varepsilon$, and on the interval $[0, \varepsilon]$ the function $f_{\varepsilon}(r)$ is defined linearly.

The following lemma takes place
Lemma (See [StTo, p. 70]). The set $\{|P|, P$ is a polynomial $\}$ is dense in $C_{+}(\partial \Omega)$, i.e., every non-negative continuous function on $\partial \Omega$ can be uniformly approximated by absolute values of polynomials.

According to this lemma there exist polynomials such that

$$
\left|f_{\varepsilon}\left(\left|z-z_{0}\right|\right)-P_{\varepsilon}(z)\right|<\varepsilon, \quad \text { for all } \quad z \in \partial \Omega .
$$

Consequently

$$
\begin{equation*}
\left|\left|P\left(z_{0}\right)\right|-1\right|<\varepsilon, \quad|P(z)|<1+\varepsilon, \tag{15}
\end{equation*}
$$

on $\partial \Omega$ (and according to the maximum principle on $S(\mu)$ as well). And we also have

$$
\begin{equation*}
|P(z)|<\varepsilon, \quad \text { when } \quad\left|z-z_{0}\right| \geqslant \varepsilon, \quad z \in \partial \Omega . \tag{16}
\end{equation*}
$$

Let us prove that for the polynomials $P_{t}(z)$ relation (14) is true.
If $z \in \partial \Omega$, this is evident. Let $z \in D$, where D is an open simply connected component of the set $\overline{\mathrm{C}} \backslash \Omega$. If the boundary ∂D of D is a Jordan curve, then we may apply the following (see [Go], p. 332)

Theorem. Let $f(z)$ be an analytic bounded function in a domain D (with a Jordan boundary ∂D). Let ∂D be divided into two parts γ_{1} and γ_{2}. If $\overline{\lim }|f(z)| \leqslant M_{k}$, when z tends to an inner point of $\gamma_{k}(k=1,2), z \in D$, then we have

$$
\begin{equation*}
\log |f(z)| \leqslant \omega\left(z, \gamma_{1}, D\right) \cdot \log M_{1}+\omega\left(z, \gamma_{2}, D\right) \cdot \log M_{2}, \tag{17}
\end{equation*}
$$

where $\omega(z, \gamma, D)$ is the harmonic measure of the curve γ with respect to the domain D and the point z.

From (15), (16) and (17) follows (14).
This proves (14) provided the boundary of D is a Jordan curve.
Let us now consider the case when ∂D is not a Jordan curve.
Due to the uniform continuity of P_{A} the inequalities (15) and (16) take place in some neighbourhood of ∂D (which depends on ε) as well. In this neighbourhood we can inscribe a closed Jordan curve ∂D_{b}, which bounds a domain D_{i} containing z. We may assume that for every ε the curve ∂D_{i} lies through two fixed points a_{1} and $a_{2}, a_{k} \in \partial D, a_{k} \neq z_{0}, k=1,2$.

We may now apply inequality (17) to the domain D_{r}. We only have to prove that $\omega\left(z, \gamma_{1,2}, D_{z}\right)$ does not tend to zero as $\varepsilon \rightarrow 0$. Fix a point $z \in D_{\varepsilon}$ and intersect the domain D_{z} by some simply connected Jordan domain G so that $z \in G \cap D_{\varepsilon}$ and $\partial G \cap \partial D_{\varepsilon}=\left\{a_{1}, a_{2}\right\}$. Furthermore, let $\gamma_{1, n}=$ $G \cap \partial D_{\varepsilon}, \gamma_{2, z}=\partial D_{\varepsilon} \vee_{1, \varepsilon}, \beta_{2}=\partial G \cap D_{\varepsilon}, \beta_{1}=\partial G \backslash \beta_{2}$.

Now we use the so called principle of expansion (see [Go], p. 331):
Let $\hat{\partial} D=x \cup \beta$. If we expand the domain D by changing only part β, then the harmonic measure $\omega(z, x, D)$ increases and $\omega(z, \beta, D)$ decreases.

Applying this principle two times we obtain:

$$
\omega\left(z, \gamma_{1, n}, D_{z}\right)>\omega\left(z, \gamma_{1, \varepsilon}, D_{2} \cap G\right)>\omega\left(z, \beta_{1}, G\right) .
$$

Consequently, $\omega\left(z, \gamma_{1, \varepsilon}, D_{\varepsilon}\right)$ is bounded from below by a positive number which does not depend on ε.

Theorem 2^{\prime} is proved.

4. Proof of Theorems 3 and 4

First we prove the following two lemmas:
Lemma 2. For arbitrary countable set $\left\{a_{i}\right\}_{1}^{x} \subset \mathrm{C}$ a finite positive measure may be constructed, concentrated at these points, for which we have
(a) The zeros of the corresponding orthonormal polynomials $q_{n}(z)=$ $\gamma_{n} z^{n}+\cdots$ are arbitrary close to the points $\left\{a_{i}\right\}_{1}^{x}$. More exactly, if we put

$$
\delta_{n}=\max _{1 \leqslant i \leqslant n} \operatorname{dist}\left(a_{i},\left\{z e r o s \text { of } q_{n}(z)\right\}\right),
$$

than $\delta_{n} \rightarrow 0($ as $n \rightarrow \infty)$ with arbitrary high rate.
(b) $\gamma_{n} \rightarrow \infty($ as $n \rightarrow \infty)$ with arbitrary high rate.
(c) The values of $q_{n}(z)$ at the points $\left\{a_{i}\right\}_{1}^{n}$ are arbitrary small. More exactly, if we put

$$
\sigma_{n}=\max _{1 \leqslant i \leqslant n}\left|q_{n}\left(a_{i}\right)\right|
$$

than $\sigma_{n} \rightarrow 0($ as $n \rightarrow \infty)$ with arhitrary high rate.
Lemma 3. For arbitrary countable set $\left\{a_{k}\right\} \subset C$ there exists a sequence of positive numbers $\left\{r_{k}\right\}_{k=1}^{\infty}$ with the following property: for arbitrary point $z \notin\left\{a_{k}\right\}_{1}^{x}$ the following inequality

$$
\operatorname{dist}\left(=,\left\{a_{k}\right\}_{1}^{\prime \prime}\right)>r_{n}
$$

takes place for infinitly many indices $n \in \mathrm{~N}$.
Proof of Lemma 2. Here we use the idea of high speed convergent series $\sum \mu_{n}$, wich was adopted from [StTo].

At first we prove Lemma 2 for the case when the set $\left\{a_{i}\right\}_{1}^{x}$ is bounded.
Let $Q_{n}(z):=q_{n}(z) / \gamma_{n}=z^{n}+\cdots$ denote the corresponding monic orthogonal polynomials. $\rho_{n}\left(a_{m}\right)$ is defined as in Lemma 1, i.e., $\rho_{n}\left(a_{m, n}\right)=$ $\operatorname{dist}\left(a_{m},\left\{z e r o s\right.\right.$ of $\left.\left.q_{n}(z)\right\}\right)$. It is easy to verify that

$$
\left|Q_{n}\left(a_{m}\right)\right| \geqslant \rho_{n}^{\prime \prime}\left(a_{m}\right)
$$

Now we shall show that the values $Q_{n}\left(a_{m}\right), 1 \leqslant m \leqslant n$, may tend to zero with arbitrary high rate as $n \rightarrow \infty$. Then the first assertion of Lemma 2 will follow from the last estimation above.

We construct the measure μ in the following form: at the points a_{1}, a_{2}, \ldots we concentrate masses $\mu_{1}, \mu_{2} \ldots$, where $\mu_{1}=\varepsilon_{1}, \mu_{2}=\varepsilon_{1} \varepsilon_{2}, \mu_{3}=\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}, \ldots$, with $\varepsilon_{i}>0, \sum_{i=1}^{x} \varepsilon_{i} \leqslant 1$.

We define the numbers $\left\{\varepsilon_{i}\right\}$ in consecutive order. We choose ε_{1} arbitrarily $0<\varepsilon_{1}<1$. Now let we have defined $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$; Let us define ε_{n+1}. The monic polynonial $Q_{n}(z)$ has the following extremal property:

$$
\begin{equation*}
\sup \int\left|z^{n}+\cdots\right|^{2} d \mu(z)=\int\left|Q_{n}(z)\right|^{2} d \mu(z)=1 / \gamma_{n}^{2} \tag{18}
\end{equation*}
$$

where $\gamma_{n}>0$ is the leading coefficient of the corresponding orthonormal polynomial $q_{n}(z)$.

Let $T_{n}(z)=\left(z-a_{1}\right)\left(z-a_{2}\right) \cdots\left(z-a_{n}\right)$ and let d denote the diameter of the set $\left\{a_{k}\right\}_{1}^{\infty}$. Then by (18) we have $\int\left|Q_{n}(z)\right|^{2} d \mu(z) \leqslant \int\left|T_{n}(z)\right|^{2} d \mu(z)=$ $\sum_{k=1}\left|T_{n}\left(a_{k}\right)\right|^{2} \mu_{k}=\sum_{k>n}\left|T_{n}\left(a_{k}\right)\right|^{2} \mu_{k} \leqslant d^{2 n}\left(\mu_{n+1}+\mu_{n+2}+\cdots\right)=d^{2 n} \varepsilon_{1} \varepsilon_{2} \cdots$ $\varepsilon_{n+1}\left(1+\varepsilon_{n+2}+\varepsilon_{n+3}+\cdots\right) \leqslant 2 d^{2 n} \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n+1}$. (Here we use that $\left.\sum_{1}^{5} \varepsilon_{i} \leqslant 1\right)$. Consequently,

$$
\begin{equation*}
\int\left|Q_{n}(z)\right|^{2} d \mu(z) \leqslant 2 d^{2 n_{1}} \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n+1} \tag{19}
\end{equation*}
$$

On the other hand, we have

$$
\int\left|Q_{n}(z)\right|^{2} d \mu(z) \geqslant\left|Q_{n}\left(a_{m}\right)\right|^{2} \cdot \mu_{m}, \quad \text { for all } \quad m \geqslant 1
$$

The last two inequality together with $\mu_{m}=\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{m}$ yield

$$
\left|Q_{n}\left(a_{m}\right)\right|^{2} \leqslant 2 d^{2 n} \varepsilon_{m+1} \varepsilon_{m+2} \cdots \varepsilon_{n+1}, \quad \text { if } \quad m \leqslant n
$$

This estimation shows that if we choose ε_{n+1} in the proper way, all numbers $Q_{n}\left(a_{m}\right), 1 \leqslant m \leqslant n$, will be arbitrary small.

Besides that, from (18) and (19) it follows that γ_{n} is large if ε_{n+1} is small.
Assertions (a) and (b) of Lemma 2 are proved.
Furthermore, by orthonormality we have

$$
\begin{equation*}
1=\int\left|q_{n}(z)\right|^{2} d \mu(z)=\sum_{i=1}^{n+1} \mu_{i}\left|q_{n}\left(a_{i}\right)\right|^{2}+\sum_{i=n+2}^{x} \mu_{i}\left|q_{n}\left(a_{i}\right)\right|^{2} . \tag{20}
\end{equation*}
$$

if now we choose ε_{n+2} sufficiently small then the infinite sum in (20) will be arbitrary close to 0 . Then the corresponding finite sum will be arbitrary close to 1 . Due to assertion (a) the same fact will be true if we replace $q_{n}(z)$ by $\gamma_{n} T_{n}(z)$. So $\sum_{i=1}^{n+1} \mu_{i}\left|\gamma_{n} T_{n}\left(a_{i}\right)\right|^{2}=\mu_{n+1}\left|\gamma_{n} T_{n}\left(a_{n+1}\right)\right|^{2}$ is arbitrary close to 1. Using again assertion (a) we get that $\mu_{n+1}\left|q_{n}\left(a_{n+1}\right)\right|^{2}$ is also arbitrary close to 1 .

Now from (20) follows part (c) of Lemma 2.
Lemma 2 is proved.

Remark. We have proved Lemma 2 for the case when the set $\left\{a_{h}\right\}_{1}^{\infty}$ is bounded. In the general case the proof is the same. We only have to consider the masses $\mu_{k} / d_{k}^{2 k}\left(d_{k}\right.$ denotes the diameter of $\left.\left\{a_{i}\right\}_{i=1}^{k}\right)$ instead of μ_{k} beginning with the index k, for which $d_{k}>1$.

Proof of Lemma 3. We define the numbers $\left\{r_{n}\right\}$ in the following way: we choose r_{1} so that the neighbourhoods $u_{r_{1}}\left(a_{1}\right)$ and $u_{r_{1}}\left(a_{2}\right)$ are disjoint. ($u_{r_{2}}\left(a_{k}\right)$ will denote the neighbourhood of the point a_{k} of radius r_{n}.) Next, we choose $r_{2}\left(0<r_{2}<r_{1}\right)$ so that the following neighbourhoods $u_{r_{2}}\left(a_{1}\right), u_{r_{2}}\left(a_{2}\right), u_{r_{2}}\left(a_{3}\right)$ are mutually disjoint. And so on, for each r_{n} we suppose that $0<r_{n}<r_{n-1}$ and

$$
\begin{equation*}
u_{r_{n}}\left(a_{i}\right) \cap u_{r_{n}}\left(a_{j}\right)=\varnothing, \quad \text { for all } i, j, \quad i<j \leqslant n+1 \tag{21}
\end{equation*}
$$

Besides let $r_{n} \rightarrow 0$, as $n \rightarrow \infty$.
Now we prove that the assertion of Lemma 3 is true for such $\left\{r_{n}\right\}$ Assume on the contrary that there is a point $z \in\left\{a_{k}\right\}$ and a number $n_{0} \in \mathrm{~N}$. such that

$$
\begin{equation*}
z \in \bigcup_{k=1}^{n} u_{r_{n}}\left(a_{k}\right), \quad \text { for all } \quad n \geqslant n_{0} \tag{22}
\end{equation*}
$$

By construction the neighbourhoods $u_{r_{n}}\left(a_{k}\right), k=1,2, \ldots, n$ are mutually disjoint. Hence the point z belongs only to one of these neighbourhoods. Let $k(n)$ denote the index of this neighbourhood, i.e., let $z \in u_{r_{n}}\left(a_{h(n)}\right)$. Because of (21) $u_{r_{n}}\left(a_{k(n)}\right)$ and $u_{r_{n}}\left(a_{n+1}\right)$ are disjoint too. And together with the condition: $r_{n+1}<r_{n}$, this implies that

$$
u_{r_{n}}\left(a_{k(n)}\right) \cap u_{r_{n+1}}\left(a_{k}\right)=\varnothing, \quad k=1,2, \ldots, n+1, \quad k \neq k(n)
$$

But according to (22) $z \in \bigcup_{k=1}^{n+1} u_{r_{n+1}}\left(a_{k}\right)$. So $z \in u_{r_{n+1}}\left(a_{k l_{n}}\right)$. In other words $k(n+1)=k(n)$. If we continue this arguing we obtain that $k(n)=k\left(n_{0}\right)$, for all $n \geqslant n_{0}$. That means that the point z belongs to all neighbourhoods $u_{r_{n}}\left(a_{k\left(n_{0}\right)}\right)$ of the one and the same point $a_{k\left(m_{n}\right)}$. But since $r_{n} \rightarrow 0$ we obtain: $z=a_{k\left(n_{0}\right)}$. But this contradicts the condition $z \notin\left\{a_{k}\right\}_{1}^{*}$.

Lemma 3 is proved.
Proof of Theorem 3. Fix a sequence of positive numbers $x_{n} \rightarrow 0$ and numbers $\left\{r_{n}\right\}_{1}^{\infty}$, defined as in Lemma 3. As it follows from Lemma 2 we may construct a discrete measure concentrated at the points $\left\{a_{k}\right\}_{1}^{*}$ and such that the corresponding orthonormal polynomials have the following properties:

1. The zeros of $q_{n}(z)$ are arbitrary close to the points $a_{1}, a_{2}, \ldots, a_{n}$. We suppose that

$$
\begin{equation*}
\left|z_{k}-a_{k}\right|<r_{n} / 2, \quad k=1,2, \ldots, n, \tag{23}
\end{equation*}
$$

where z_{k} is the nearest zero of $q_{n}(z)$ to $a_{k}, k=1,2, \ldots, n$.
2. The leading coefficients γ_{n} of $q_{n}(=)$ are arbitrary large.
3. The values $\left\{q_{n}\left(z_{k}\right)\right\}_{k=1}^{n}$ are arbitrary small. We suppose that

$$
\begin{equation*}
\left|q_{n}\left(a_{k}\right)\right| \leqslant x_{n}, \quad k=1,2, \ldots, n \tag{24}
\end{equation*}
$$

Due to Condition 2 we may choose $\gamma_{\prime \prime}$ such a large that

$$
\begin{equation*}
\left|q_{n}(z)\right| \geqslant 1 / \alpha_{n} \quad \text { for all } \quad=\notin \bigcup_{k=1}^{n} u_{r_{n}}\left(a_{k}\right) \tag{25}
\end{equation*}
$$

where $u_{r_{n}}\left(a_{k}\right)$ denotes (as in Lemma 3) the neighbourhood of the point a_{k} of the radius r_{n}. That is possible because for the indicated points z we have:

$$
\left|q_{n}(z)\right|=\gamma_{n}\left|z-z_{1}\right| \cdot\left|z-z_{2}\right| \cdots\left|z-z_{n}\right| \leqslant \gamma_{n}\left(r_{n} / 2\right)^{n}(\sec (23)) .
$$

Now the first relation of Theorem 3 follows from (24) and the second follows from (25) together with Lemma 3.
Actually, we have proved more than we assert in Theorem 3. Namely, we have proved that the convergence in the relations of the theorem may be realized with arbitrary high rate.

Let us prove, furthermore, that the limit superior in the second relation of Theorem 3 may be replaced by ordinary one for quasi every z. Denote $G_{n}:=\bigcup_{k=1}^{n} u_{r,(}\left(a_{k}\right)$. From (25) it follows that if for some z the number of indices n, for wich the inclusion $z \in G_{n}$ takes place is finite, then for this point the limit superior may be replaced by the ordinary one.
Denote by E the set of the points which belong to infinitely many G_{n}. Let $E_{n}:=\bigcup_{k \geqslant n} G_{k}$. It is easy to prove that $E=\bigcap_{n=1}^{x} E_{n}$.

Consider the set $E_{n} . E_{n}=\bigcup_{k \geqslant n} G_{k}$, where each G_{k} is the union of k disks of radius r_{k}. The conditions of Lemma 3 bound the numbers r_{k} only from above and therefore, we may suppose that these numbers satisfy the following condition

$$
\begin{equation*}
\sum_{k=1}^{\times} k\left[\log \left(1 / r_{k}\right)\right]^{-1}<\infty \tag{26}
\end{equation*}
$$

We need the following definition (see [La], p. 244): Let $\left\{u_{i}\right\}$ be a covering of a set E, where u_{i} is a disk of radius r_{i}. Suppose that $r_{i}<\varepsilon$ and consider the sum:

$$
\sum_{i}\left[\log \left(1 / r_{i}\right)\right]^{-1}
$$

Let furthermore:

$$
\inf _{r_{i}<\varepsilon} \sum\left[\log \left(1 / r_{i}\right)\right]^{-1}=m(E, \varepsilon)
$$

where the infimum is taken from all possible covering for which $r_{i}<\varepsilon$. The value

$$
m(E)=\lim _{\varepsilon \rightarrow 0} m(E, \varepsilon)
$$

is called logarithmic measure of Hausdorff. We apply the following (see [La], p. 249):

Theorem. If the logarithmic measure of Hausdorff of a set E is finite than its inner logarithmic capacity equals zero.

We apply this theorem to the set $E=\cap_{n \geqslant 1} E_{n}$. (The set E is a Borel set and in this case instead of the inner logarithmic capacity we may speak about the logarithmic capacity). Since $E \subset E_{n}, n \in \mathrm{~N}$ we may consider the set E_{n} as a covering of the set E by disks. The following sum

$$
\sum_{k \geqslant n} k\left[\log \left(1 / r_{k}\right)\right]^{\cdots 1}
$$

corresponds to the set E_{n}. This sum tends to zero as $n \rightarrow \infty$ (see (26)). Furthermore, from (26) it follows that $r_{n} \rightarrow 0$, as $n \rightarrow \infty$. Consequently, $\sup _{k \geqslant n} r_{k} \rightarrow 0$, as $n \rightarrow \infty$, and this implies by the definition that the logarithmic measure of Hausdorff of the set E equals zero.

Theorem 3 is proved.
Proof of Theorem 4. Just as in Theorem 3 we may construct a measure concentrated at the points $\left\{a_{i}\right\}$, such that:

1. The zeros of $q_{n}(z)$ are arbitrary close to the points $a_{1}, a_{2}, \ldots, a_{n}$.
2. The leading coefficients γ_{n}^{\prime} of $q_{n}(z)$ are arbitrary large.
3. The values $q_{n}\left(a_{k}\right), k=1,2, \ldots, n$, are arbitrary small.

Condition 3 guarantees the following inequality:

$$
\left|q_{n}\left(a_{k}\right)\right| \leqslant \alpha_{n}, \quad k=1,2, \ldots, n
$$

And Conditions 1 and 2 guarantee that:

$$
\begin{equation*}
\left|q_{n}\left(b_{k}\right)\right| \geqslant 1 / \alpha_{n}, \quad k=1,2, \ldots, n \tag{27}
\end{equation*}
$$

Indeed, $\left|a_{n}\left(b_{k}\right)\right|=\gamma_{n}\left|b_{k}-z_{1}\right| \cdot\left|b_{k}-z_{2}\right| \cdots\left|b_{k}-z_{n}\right|$, where $z_{1}, z_{2}, \ldots, z_{n}$ are the zeros of $q_{n}(z)$, and they are arbitrary close to the points $a_{1}, a_{2}, \ldots, a_{n}$. Hence, we may assume that

$$
\min _{1 \leqslant i \leqslant n, 1 \leqslant k \leqslant n}\left|b_{k}-z_{i}\right|>c_{n},
$$

where c_{n} depends only on the sets $\left\{a_{k}\right\}_{1}^{n},\left\{b_{k}\right\}_{1}^{n}$. Then we have the estimation $\left|q_{n}\left(b_{k}\right)\right| \geqslant \gamma_{n} c_{n}^{n}$, where according to Condition $2, \gamma_{n}$ may be arbitrary large. Consequently, inequality (27) is guaranteed.

Theorem 4 is proved.

Acknowledgment

The present work was stimulated by fundamental results obtained in this direction by H. Stahl and V. Totik (see [StTo]). At the same time the author expresses deep gratitude to Professor A. Aptekarev for attracting the author's attention to the topic and for useful discussions of the results.

References

[Ak] N. 1. Akhiezer, "The Moment Problem," Fizmatgiz, Moscow, 1961; Oliver and Boyd, Edinburgh, 1965.
[AKW] A. Aptekarev, V. Kaliaguine, and W. Van Assche, Criterium of resolvent set of nonsymmetric tridiagonal operators. Trans. Amer. Math. Soc., submitted for publication.
[BaGr] G. A. Baker, Jr., and P. R. Grayes-Morris, Pade approximants. Parts 1 and II. in "Encyclopedia of Math.." Vols. 13 and 14, Cambridge Univ. Press, Cambridge, 1981.
[Go] G. M. Goluzin, "Geometrical Theory of Complex Variable Functions." Nauka. Moscow, 1966.
[Ko] P. P. Korovkin, Capacity of sets and polynomials minimizing integral, Trans. Kaliningradsk Pedagogical Inst. 5 (1958).
[La] N. S. Landkof, "Foundations of Modern Potential Theory," Nauka, Moscow, 1966; transl. in Grundlehr. Math. Wissenschaften 190 (1972).
[NiSo] E. M. Nikishin and V. N. Sorokin, "Rational Approximations and Orthogonality," Nauka, Moscow, 1988; transl. in Math. Monographs 92 (1991).
[SaTo] E. B. Saff and V. Totik, What parts of a measure's support attract zeros of the corresponding orthogonal polynomials?, Amer. Math. Soc. 114, No. 1 (1992).
[StTo] H. Stahl and V. Totik. "General orthogonal polynomials, in "Encyclopedia of Mathematics," Cambridge Univ. Press, New York, 1992.
$[\mathrm{Sz}]$ G. Szego, "Orthogonal Polynomials," Colloquium Publications, Vol. 23, Amer. Math. Soc., Providence, RI, 1975.

